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Diffusion in material of inhomogeneous composition can induce phase changes, even at a
constant temperature. A transient liquid phase (TLP), in which a liquid layer is formed and
subsequently solidifies, is one example of such an isothermal phase change. This
phenomenon is exploited industrially in TLP bonding and sintering processes. Successful
processing requires an understanding of the behaviour of the transient liquid layer in terms
of both diffusion-controlled phase boundary migration and capillarity-driven flow.

In this paper, a numerical model is presented for the simulation of diffusion-controlled
dissolution and solidification in one dimension. The width of a liquid layer and time to
solidification are studied for various bonding conditions. A novel approach is proposed,
which generates results of a high precision even with coarse meshes and high interface
velocities. The model is validated using experimental data from a variety of systems,
including solid/solid diffusion couples. © 2005 Springer Science + Business Media, Inc.

1. Introduction

Transient liquid phases (TLPs) are observed in many al-
loy systems. However, commercial exploitation of the
phenomenon is relatively limited. This is partly because
current understanding of the process is incomplete, ren-
dering the optimisation of various process variables and
design parameters difficult.

Qualitatively, TLPs are easily understood; a full de-
scription of the underlying physical processes has been
given by MacDonald and Eagar [1]. The essential re-
quirement is that the liquidus temperature of an alloy
varies with composition. It is then possible for variation
of concentration in an inhomogeneous alloy to cause lo-
calised melting at temperatures where the bulk of the
material remains solid. If liquid and solid of different
compositions are in contact, diffusion will change the
concentration profile and can cause an initial widen-
ing of the liquid layer, followed by solidification, even
during an isothermal heat treatment. Such diffusion-
controlled solidification can be used to bond particles
in a powder compact (TLP sintering) or to join larger
objects (TLP bonding).

Once solidified, the final composition in the vicinity
of a joint can be relatively homogenous. As a result,
its properties (such as strength and remelt temperature)
can approach those of the parent material. The tran-
sient presence of a liquid phase also affords advantages
over other joining techniques. Flow under the influence
of capillary forces will naturally tend to eliminate any
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porosity within a bond, without the need to impose any
external pressure. In the case of TLP sintering, the lig-
uid phase can additionally promote particle rearrange-
ment, leading to rapid densification of a green body.

The transience of the liquid phase arises due to
changes in composition which are a result of diffusion.
In the next section, the physical processes which un-
derlie TLPs are examined and a model is developed in
which they are simulated.

2. Modelling
2.1. Mathematical description
of the problem
Diffusion in both liquid and solid is assumed to be gov-
erned by Fick’s second law (the “Diffusion Equation”),

de(x, 1) _ 9 (D(c(x, 1))

at ox M)

dc(x, 1)

ox >’
where the composition, c(x, t), is a function of both
position (x) and time (¢). D(c(x, t)) is the diffusion
coefficient of solute in either the liquid or solid phase,
which depends on both temperature and concentration.
The diffusion Equation 1 has been solved for a range of
initial and boundary conditions. However, TLPs have
solid and liquid phases which change size over time;
this introduces a moving boundary condition, which
complicates the analysis.
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Figure 1 Schematic diagram showing the concentration profile across
a TLP bond at one instant in time. Only half of the joint is shown; the
other half (from x = —L to x = 0) will be symmetrical.

A one dimensional planar geometry is assumed, as
shown in Fig. 1. The variable s(¢) is introduced to de-
scribe the position of a solid/liquid interface (which
varies as a function of time). The moving boundary
problem can then be expressed as [2]:

de(x, 1) 0 ( dc(x, t))
Da(c(x, 1)) , 0<x<s(r)
ar  ox
()
de(x,1) 9 dc(x, t)
(DB(c(x 1)) ), s(t)y<x <L
ot ox ox
3
dc(x, 1) dc(x, 1)
Da(c(x, 1)) —Dg(c(x, 1))
x=s(t)" x=s(t)"
= les — eAl 2. x=s) @

The first equation describes diffusion to the left of the
interface, in phase A (liquid in the case of Fig. 1). The
second equation refers to diffusion in phase B, to the
right of the interface (the solid). The third describes the
moving boundary condition at the interface. It can be
derived by assuming there is local equilibrium there,
and by requiring solute conservation. (The notation ca
and cp is used for the equilibrium liquidus and solidus
concentration.) A complete statement of the problem
also requires initial conditions, as well as conditions at
the fixed boundaries x = 0 and x = L; these are triv-
ial and are omitted for clarity. Any diffusion-controlled
isothermal phase change with a planar geometry will
obviously be subject to these governing equations, irre-
spective of whether the phases are solid or liquid. The
model developed below can thus be applied to solid
state transformations, as well as TLPs.

Systems of partial differential equations with moving
boundary conditions (also known as Stefan problems)
arise in a variety of modelling situations across the sci-
ences [3]. For certain idealised cases, analytical solu-
tions are available [3-5]. In general, however, numer-
ical solution methods are required. Several viable ap-
proaches have been proposed. Unfortunately, Furzeland
[6] concludes that the most effective approach to solv-
ing a Stefan problem depends on the exact nature of the
problem itself. Zhou et al. [ 7] describe numerical meth-
ods formulated specifically to study TLP problems.
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2.2. Fixed spatial discretisation models

In modelling TLPs, the main difficulty arises in track-
ing the motion of solid/liquid interfaces. Previously, a
fixed discretisation of the domain x = Otox = L
has generally been imposed, and a certain concentra-
tion is associated with each point after every timestep.
The motion of the interface can then be described in a
number of ways.

One approach, used by Nakagawa et al. [8] and Cain
et al. [9], is to solve the diffusion equations by impos-
ing the requirement that the interface be located at one
of the discretisation points. In this case, only a step-
wise motion of the interface is permitted. Such a con-
straint is physically unrealistic. In addition, restrictions
on the interface position probably introduce significant
errors into the model, as inaccurate approximations of
the interface position will directly affect estimates of
the fluxes there (and will therefore also affect the pre-
dicted interface motion).

More refined models explicitly take account of the in-
terface position and use a discretised form of Equation 4
to predict its motion. Shinmura et al. [10] used an al-
gorithm based on this approach to investigate possi-
ble interlayer materials for bonding nickel. Zhou and
North [2] also employed this approach. In an attempt
to improve the accuracy of their predictions for the in-
terface motion, they additionally proposed the use of a
quadratic expression for the concentration profile near
the interface, in order to better estimate the fluxes there.

These two models differ slightly in the way that
they solve the diffusion Equations 2 and 3: Shinmura
et al. [10] use an explicit expression, whereas Zhou
and North [2] claim to use an implicit scheme. Cer-
tainly, they solve an implicit form of Equations 2 and 3.
However, the three Equations 2—4 are interdependent—
implicit methods of calculating future concentration
profiles will therefore give rise to expressions involv-
ing future interface positions as well as future concen-
trations. Since their method calculates future interface
positions by solving (4) explicitly, their scheme is only
semi-implicit overall. As a result, there is a limitation
on the size of timestep that can be used to generate a
solution.

Sinclair et al. [11] also implemented an explicit ver-
sion of this same algorithm and used it to investigate the
solidification of ternary systems. TLP bonding of sys-
tems with three components has been investigated in
parallel by Campbell and Boettinger [12]. They used
generic software, which was developed to describe
general diffusion-controlled transformations (not TLP
bonding specifically).

It is relatively simple to derive finite difference ap-
proximations of the governing Equations 24 if a fixed
discretisation of space is imposed. Nevertheless, nu-
merical solutions must be calculated carefully. In par-
ticular, during timesteps when the interface moves from
one element to its neighbour, schemes developed for
fixed meshes will not generally conserve solute. Modifi-
cations to ensure the conservation of solute are possible,
but they increase the complexity of programming. If the
interface moves more than one element, solute conser-
vative programming becomes even more difficult.
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Unfortunately, rapid interface motion is typical of the
early stages of TLP bonding. Calculations using large
timesteps will therefore contain inaccuracies associated
with the non-conservation of solute. Eliminating these
errors by reducing the step size has the drawback of
increasing the computational effort required to solve
the problem. The way in which the accuracy of predic-
tions is affected by any particular choice has nowhere
been addressed. In comparison, truncation errors are
the only source of inaccuracy for conservative discreti-
sation schemes.

2.3. Use of variable spatial discretisation
Instead of ‘tracking’ the motion of a moving bound-
ary across a fixed spatial discretisation, one alternative
is to use a mesh which varies in a way that takes ac-
count of the moving interface [3]. It is then possible
to ensure that the interface position always coincides
with a discretisation point without constraining its mo-
tion. This approach was used by Tanzilli and Heckel
to model solid-state phase transformations as long ago
as 1968 [13]. Kajihara and Kikuchi [14] implemented
an implicit version of the same model to investigate
the behaviour of solid y/a/y diffusion couples in the
Fe-Cr-Ni system.

In the present work, a variable space grid is achieved
by introducing a wholesale co-ordinate transforma-

tion using two new positional variables: u = =~ and

V== S(’ . These definitions mean that, for ang(/[)tlme
the 1nterval 0 < x < s(t) coincides with 0 < u < 1,
and that s(f) < x < L coincides with 0 < v < 1.
Changing co-ordinate system also means that the gov-
erning Equations 2—4 must be modified. Writing p(u, t)
as the concentration in phase A (which takes the same
value as c(x,t) in 0 < x < s(t)) and g(v, t) as the
concentration in phase B (corresponding to c(x, ) in
s(t) < x < L), Equations 2—4 become [3]:

ds(t) op(u, t)
dr ou

ap(b;”), O<u<1 (5

s 2P (abi D s

a
<DA(P(M 1)

8u
dq(v, 1) ds(t) dg(v, 1)

p— 27 —
[L—s()] o7 (1 =)L —s(2)] ™
_ i(DB(q(v, ) 24 [)), O<v<l1 (6)
Jdv Jdv
Da(p(u,t)) op(u, t) _ Dg(g(v, 1) 9q(v, 1)
s(t) ou |, L —5(t) v |,—o
:[CB—CA]dZ(tt).uzl; v =0 7

In this new co-ordinate system, the interface is fixed at
u = 1 and v = 0 for all ¢. Fixing the front in this way
means that interface motion can be handled more easily.
On the other hand, the derivation of a finite difference
scheme that conserves solute becomes more 1nv01ved.

Using the identities a(dl;l D — p+ul 52 and

d( ) d . .
LY = pds % Equation 5 can be re-written

as

d(ps) _ ds d(pu)
3t dr ou

ap
+ Da— ). O<u<1 (8
s du ou

Similarly, (6) can be expressed as

d(glL —s]) _ ds d(g(1 —v))
at S odr v
1 0 aq
L—s%(DB£>' O<v<l1 (9

Discretising the space co-ordinate # at N points
(o ...uy_1), writing u;11,> as the position midway
between u; and u;4; and introducing the timestep §t
such that #/*! = ¢/ 4 §¢, the finite volume technique
[15] is used to integrate the divergent form (8) over one
spacestep and one timestep:

i+1/2 /! i+1/2
/ / —{ps}dtdu = / /
Ui—1,2 t/ Ui—1/2 Bu
d Dy 0
x {d—jpu—l— A p}dudt O<u<l (10)
Introducing pf+0 (and s17) to represent the concentra-
tion at #; (and the interface position) after a proportion
o of the timestep has elapsed, Equation 10 leads to the
approximation

/'+1Sj+1 _

(p! pis?)wiv12 — ui—1)2)

g il
sito T T ——
jto _ _jto
_(DA){T/Z%) (s = s)

i i—1

X (Pf:la/zuiﬁ/z - P,']jf/zuiflﬂ)a (11)
where (DA)fIf/z correspond to the diffusion coeffi-
cients for the concentrations mid-way between discreti-
sation points. In the remainder of this work, diffusion
coefficients will be assumed to be independent of con-
centration. For a fixed bonding temperature, (DA), 412
will be then be constant, taking a value which will be
denoted Dj.

Setting i = 1...N — 2, Equation 11 can be used
to generate a set of finite difference approximations for
the future compositions in phase A. Fori = Qor N —1,
finite difference approximations for the relevant bound-
ary conditions must be applied. At the movmg interface
(u = 1), local equilibrium requires that p’, N 1 =cp. At
the fixed boundary (# = 0), standard techniques [15,
16] can be used to modify (11) so as to ensure zero flux.
Doing so gives rise to the finite difference expression

j+1sj+l

(P} - Pjsj)(ul/z)

DAS (DI =07 e e
_s1+cr( 1 + (7 =) (p1 wapn)-
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Similarly, integration can be used to generate finite dif-
ference expressions for future compositions in phase B
from Equation 9:

(g7 (L — s — g/ (L = $))Wis1)2 — vioi )

__a (ol -a e e
L—sito 8 Vi+1 — V; 8 Vi — Vi1
+ (7 = 57) (@00 = vis12)
—qi T (0 —visip). (12)

Appropriate boundary conditions are easily derived in
the same way as for phase A.

It remains to discretise Equation 7, which describes
the motion of the interface and which follows from
the requirement that solute be conserved there. A finite
difference form can be derived in the same way. If v is
discretised at M — 1 points, the total amount of solute
in the system at time ¢/ %! is

N-2
1| U —uo 1 Uikl — U]
s pit —=——= 4 p/
2 £ 2

u UN— : v
,+1 N 2N 1]+(L—s/+l)[qé+l 12 Vo

j+1 Uz+1
+ Z /

A similar expression gives the total amount of solute
at time /. For the model to be conservative, the dif-
ference between these two values must be zero. Sub-
tracting one from the other gives rise to terms such
as “EStL[g/H pl g pl1, for which alternative
forms have been derlved (Equations 11 and 12). Mas-
sive cancellation upon substitution leaves only

Dgét qu+g — CB
L — Sj+a V1

. N1 4+un_y I —un_>
+1 +o
= (s —s/)[ip{q it ——5—ca

U1 jto 1
_<1 . 5>q1/2 - EcB]. (13)

Equations 11-13 form a finite difference formulation
of the problem described analytically in Equations 5—
7. The way in which they were derived has ensured
that they conserve solute. Appropriate approximations
for terms at intermediate times (j+o ) and intermediate
positions (i £ 1/2) will be considered presently, along
with efficient methods of solving the resulting set of
equations.

+ -

v UM—
—|—q’+1 M 2M1:|‘

Jj+o
Dpdt ca — PN_>
sito

l —un-

2.4. Implementation

The problems relating to diffusion ((11) and (12)) and
interface motion (13) are interdependent: the diffusion
equations involve the future interface position; con-
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versely, for all implicit schemes (o # 0), the interface
equation involves terms which depend on future con-
centrations. The concentration profiles and the interface
motion therefore form a strongly coupled problem. It
follows that the equations cannot be solved indepen-
dently; instead, they must be solved simultaneously.

Since the system of simultaneous equations is non-
linear, an iterative solution method must be used. This
is potentially very demanding in terms of computing
time. But careful analysis can significantly improve the
efficiency of the algorithm.

Firstly, note that it is trivial to solve Equation 13
for s/t if estimates are available for s/*° and con-
centration profiles p 7 and ‘L (from which inter-
mediate concentrations p’L 2 and ‘L il /o can be deter-
mined). Once s/*! has been calculated, it is easy to
find future concentrations p . assuming that terms
such as p il /2 can be approximated sufficiently well
using only the concentrations of nelghbouring points at
the same time (i.e. p;/*7, p/™* and p/7), Equation 11
is reduced to a tridigonal form, which can be inverted
cheaply. Concentrations in phase B can also be calcu-
lated by inverting a tridiagonal matrix which follows
from (12).

Having decoupled and linearised the problem in this
way, implementation is simple. The results discussed in
the following section have been generated by an algo-
rithm which, at each timestep, executes the following
procedure:

(1) Take s/, p! ) and % as initial values for s/+7, pl

and q 7 and calculate intermediate concentration pro-
J j+

files Pi+1/2 and ¢/, 4

(2) Calculate the future interface position, s/*! using
(13).

(3) Using this value of s/*!, update the estimate for
sJto

(4) Calculate the future interface positions, p ! and
‘11 I for all i using (11), (12) and the boundary
conditions. ‘

(5) Using these Values for p "and qlJ + , update the
estimates for p 7 and q 7 and calculate intermediate
concentration profiles p; +] /2 and g] +1 /2

Steps (2)—(5) are then repeated until successive es-
timates of the interface position s/*! differ by less
than some fixed tolerance. If successive refinements
do indeed converge to some fixed value, this will cor-
respond to a solution of the implicit set of discretised
equations.

It is well known [16, 17] that the Crank-Nicolson
scheme (¢ = 1/2) gives an error that is propor-
tional to 8¢2. This would seem preferable the fully im-
plicit scheme (o = 1), which generates errors propor-
tional to 6¢. However, if the Crank-Nicolson scheme
is used to discretise discontinuous composition pro-
files, unphysical oscillations will be predicted close
to the discontinuity unless the timestep is of the or-

der of m (where & is the spacestep) [16]. On

the other hand, fully implicit schemes predict mono-
tonic concentration profiles, no matter what timestep
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is chosen [15-17]. Since discontinuous concentration
profiles and large diffusion coefficients are inherent
to TLPs, attention will be limited to fully implicit
schemes.

Monotonicity concerns must also be taken into ac-
count when considering possible approximations for
the intermediate concentrations piJLo/z and qifl‘;z. It is
known that second-order centre-difference schemes can
produce non-monotonic (oscillating) solutions [15, 17].
In the case of the current problem, trials have indicated
that such approximations do indeed generate such un-
physical predictions for the TLP problem. Instead, the
following fully implicit up/down-wind approximations
are used:

e For a positive velocity (s/! > s/):
jro  _ j+1 jro  _ j+l
Piv12 = Piv1» Pic1p = Pi and

Jjto Jj+1 jto

_ _ Jtl,
9iv12 = 94biv1 5 q; >

di—120 =
e For a negative velocity (s/*! < s/):

plip=pl" Py =pll and
alip=a" al=al

Computer code implementing an algorithm using
these approximations has been prepared. Experiments
have shown that predictions using these first order ap-
proximations for the spatial and temporal variation of
composition generate smooth, monotonic profiles. In
addition, successive estimates of interface positions at
each timestep do indeed converge to fixed values, in-
dicating that linearising and decoupling the problem is
a suitable method of finding its solution in an efficient
way. Results from the model are presented in the next
section.

3. Validation, results and discussion

A variety of systems have been investigated, and re-
sults agree well with experimental data. In Fig. 2, the
half width of the liquid layer is plotted as a function of
time for a Ni-P interlayer between pure Ni plates. Fol-
lowing Zhou and North [2], a constant molar volume is
assumed (irrespective of phase and composition)!. Ex-
perimental data and model predictions from the same
source are also presented in Fig. 2, for comparison with
the present work.

The behaviour of the transient liquid phase predicted
by both models is in accordance with our qualitative
understanding of the process. The output is also in
approximate quantitative agreement with experimen-
tal data, even if very few discretisation points are
used.

Both models assume that the number of atoms in any
given volume does not vary with composition. Since
phosphorous is an interstitial element in solid nickel,
this assumption is not strictly correct. However, the

! This assumption will be made in all subsequent calculations.

TLP bonding of nickel
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Figure 2 Predicted variation of liquid half-layer thickness with time as
Ni-P liquid solidifies between two sheets of pure Ni. Experimental data
and numerical predictions of Zhou and North [2] are compared with
output from the current model, using the same geometry and the same
diffusion coefficient for phosphorus in solid or liquid nickel (1.8 x 10~
or 5x 1078 cm? s ! respectively). The ‘theoretical maximum liquid layer
thickness’ is calculated by neglecting fluid flow and diffusion in the solid
and assuming a constant molar volume.

very low solidus concentration at the bonding temper-
ature (0.17 at% P) means that errors arising due to this
simplification are probably not significant. Assuming
a constant molar volume permits the theoretical maxi-
mum liquid layer thickness to be calculated—the thick-
ness at which liquid is diluted to the equilibrium con-
centration, without any diffusion of solute into the solid.
For 12.5 pum of Ni-19 at% P dissolving pure Ni until
it reaches a concentration of 10.2 at% P (the liquidus
concentration at the bonding temperature), the theoret-
ical maximum liquid width is 23.2 m. The predictions
of Zhou and North [2] exceed this value, indicating that
their simulation does not conserve solute. The predic-
tions of the present model do not exceed the theoretical
maximum, which is consistent with the fact that it does
conserve solute.

One experimental datum is also greater than the ‘the-
oretical maximum’. This may be because the assump-
tion of constant molar volume in the liquid is incorrect.
Alternatively, liquid flow during experiments may have
affected the thickness of the liquid layer as well as dif-
fusion.

Difficulties associated with eliminating liquid flow
mean that experimental data for the width of TLPs
that are strictly controlled by diffusion are sparse [1].
If neither phase in a diffusion couple is fluid, flow is
not a problem. Data for two-phase diffusion-controlled
phase transformations in the solid state are more readily
available; since these represent mathematically identi-
cal problems, this data can be used to further test the
model. Heckel et al. [18] investigated the diffusion of
Zn in - B brass diffusion couples. Their data tracking
interface positions as a function of time are presented
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100 e e —

et T T
.

[¢)]
o

@ Thick initial B layer - Experimental
-100 [f====" Thick initial B layer - Du =1.4E-8 cm® sec”
== Thick initial 3 layer - D_= 2.5E-8 cm? sec”

¥ Thin initial B layer - Experimental

Interface Displacment (um)
g

-150 |

~ 7 Thin initial B layer - D., =1.4E-8 cm®sec”
~— Thin initial B layer - D, = 2.5E-8 cm? sec”!
_200 L il 1 1 ! 1 [
0.1 1 10 100 1000 10* 10°

Time (s)

Figure 3 Experimental data and model predictions for the growth and
subsequent shrinkage of B-brass in contact with a-brass at 870°C.
Experimental data are from Heckel et al. [18], who used a constant
thickness of a-brass (749 um) and two different thicknesses of B-brass
(381 pum and 762 pm) to investigate the motion of a phase boundary in
this system. For each initial geometry, two corresponding predictions are
plotted—the value of the diffusion coefficient of Zn in «-brass is unclear
(see text).

in Fig. 3 for two different initial thicknesses of 8 brass
(381 and 762 pum).

There is some disagreement in the literature regard-
ing the frequency factors (A) and activation energies
(Q) for the diffusion of zinc in Zn-rich o brass at
870°C. Simulations were completed using two different
diffusion coefficients, calculated using the published
reference values [19]: either A = 0.016 cm? s~! and
Q0 = 1245 kI mol™"; or A = 1.7 cm? s~! and
0 = 1729 kJ mol~!. At a temperature of 870°C,
these values correspond to diffusion coefficients D, =
1.4 x 10 cm? s7' and D, =2.5 x 108 cm? s™!. In
the B phase, the diffusion coefficient was calculated to
be 1.4 x 107% cm? s~! using the undisputed reference
values for A and Q.

The simulations using either value of D, qualita-
tively match the data, and there is close quantitative
agreement with the second set of calculations. The
differences between the model predictions indicate that
user-specified diffusion coefficients have a significant
effect on output, as expected. Clearly, correct diffusion
coefficients are required for accurate predictions. The
use of concentration-dependent diffusion coefficients
might also improve the accuracy of the model. How-
ever, on account of the paucity of data corresponding to
the concentration-dependency of diffusion coefficients
in most systems, such an extension has not been
attempted.

4. Conclusions

A model has been developed to describe isothermal
phase changes that are controlled by the diffusion of
matter under the assumptions that
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(1) There is local equilibrium at the interface;
(2) Diffusion can be described by Fick’s second law;
(3) The molar volume in each phase is constant.

The implementation considered in the present work
models a two-phase diffusion couple in one dimen-
sion (describing a planar geometry). Only binary sys-
tems have been considered in the present work, and
the diffusion coefficient in each phase is assumed to
be independent of composition. None of these con-
ditions are requirements of the method: extensions
to cover many phases in higher dimensions, or sev-
eral components and variable diffusion coefficients are
possible.

The numerical scheme requires a system of coupled
non-linear equations to be solved. The implementa-
tion described above is fully implicit and decouples the
problem into a set of linear equations which are solved
iteratively. Calculations have been found to converge
to accurate solutions, even with large timesteps. Large
spacesteps can also be used with this method, as can
non-uniform meshes.

Validation of the model has been possible using ex-
perimental data from various systems, including TLP
and solid-state diffusion couples. Agreement between
model and observation is good, even for relatively large
steps in space and time. In contrast with previous mod-
els of diffusion-controlled phase changes, the scheme
also conserves solute. It has first order accuracy in space
and time.

The model has been implemented in the C program-
ming language; optimising the efficiency of the code
means that calculations can be completed very rapidly.
The code is freely available to download from the Ma-
terials Algorithm Project web-site: http://www.msm.
cam.ac.uk/MAP
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